Sri Krishna Institute of Technology, Bangalore

COURSE PLAN
Academic Year 2019-2020

Program:	B E - Civil Engineering
Semester:	4
Course Code:	18 CV 42
Course Title:	Analysis of Determinate Structures
Credit /L-T-P:	$4 / 3: 2: 0$
Total Contact Hours:	50
Course Plan Author:	MOHAN KT

Academic Evaluation and Monitoring Cell
Sri Krishna Institute of Technology
\#29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore - 560090, Karnataka, INDIA
Phone / Fax :08023721477/28392221/23721315
Web: www.skit.org.in , e-mail: skitprinci@gmail.com

Table of Contents

A. COURSE INFORMATION 3

1. Course Overview 3
2. Course Content. 3
3. Course Material 3
4. Course Prerequisites. 4
5. Content for Placement, Profession, HE and GATE 4
B. OBE PARAMETERS 5
6. Course Outcomes. 5
7. Course Applications 5
8. Articulation Matrix 5
9. Curricular Gap and Content 6
C. COURSE ASSESSMENT. 6
10. Course Coverage 6
11. Continuous Internal Assessment (CIA) 6
D1. TEACHING PLAN - 1 7
Module - 1 7
Module - 2. 8
E1. CIA EXAM - 1 10
a. Model Question Paper - 1 10
b. Assignment -1 11
D2. TEACHING PLAN - 2 12
Module-3 12
Module - 4 14
E2. CIA EXAM - 2 15
a. Model Question Paper - 2 15
b. Assignment - 2 16
D3. TEACHING PLAN - 3 18
Module - 5. 18
E3. CIA EXAM - 3 19
a. Model Question Paper - 3 19
b. Assignment - 3 19
F. EXAM PREPARATION 20
12. University Model Question Paper. 20
13. SEE Important Questions 22
Course Outcome Computation. 25
Academic Year: 25
Odd / Even semester 25

A. COURSE INFORMATION

1. Course Overview

Degree:	Civil Engineering	Program:	B.E
Semester:	$2019 /$ IV	Academic Year:	$2019-20$
Course Title:	Analysis of Determinate Structures	Course Code:	$18 \mathrm{cv42}$
Credit / L-T-P:	$3: 2: 0$	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	$1 /$ Module
Course Plan Author:	Mohan KT	Sign ..	Dt:
Checked By:		Sign ..	Dt:
CO Targets	CIA Target :73\%	SEE Target:	54%

Note: Define CIA and SEE \% targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Mod ule	Content	Teaching Hours	Blooms Learning Levels
1	Introduction and Analysis of Plane Trusses: Structural forms, Conditions of equilibrium, Compatibility conditions, Degree of freedom, Linear and non linear analysis, Static and kinematic indeterminacy of structural systems. Influence Lines: Concepts of influence lines-ILD for reactions, SF and BM for determinate beams-ILD for axial forces in determinate trusses and numerical problems.	10	L2, L4
2	Moving Loads: Reactions, BM and SF in determinate beams, axial forces in determinate trusses for rolling loads using ILD (Max. values and absolute max. values for beams subjected to multiple loads).	10	L4
3	Deflection of Beams: Moment area method: Derivation, Mohr's theorems, Sign conventions, Application of moment area method for determinate prismatic beams, Beams of varying section, Use of moment diagram by parts, Conjugate beam method: Real beam and conjugate beam, conjugate beam theorems, Application of conjugate beam method of determinate beams of variable cross sections	10	L4
4	Energy Principles and Energy Theorems: Principle of virtual displacements, Principle of virtual forces, Strain energy and complimentary energy, Strain energy due to axial force, bending, shear and torsion, Deflection of determinate beams and trusses using total strain energy, Deflection at the point of application of single load, Castig liano's theorems and its application to estimate the deflections of trusses, bent frames, Special applications-Dummy unit load method.	10	L4
5	Arches and Cable Structures: Three hinged parabolic and circular arches with supports at the same and different levels. Determination of normal thrust, radial shear and bending moment. Analys of cables under point loads and UDL. Length of cables for supports at same and at different levels- Stiffening trusses for suspension cables.	10	Lotal

3. Course Material

Books \& other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15-30 minutes
2. Design: Simulation and design tools used - software tools used ; Free / open source
3. Research: Recent developments on the concepts - publications in journals; conferences etc.

Modul es	Details	Chapters in book	Availability
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
$\begin{gathered} \hline 1,2,3 \\ 4,5 \\ \hline \end{gathered}$	1.Reddy C S, Basic Structural Analysis, Tata McGraw Hill, New Delhi.	1, 2, 3, 4	In Lib
$\begin{gathered} \hline 1,2,3 \\ 4,5 \\ \hline \end{gathered}$	2. Muthu K U. etal, Basic Structural Analysis, 2nd edition, IK International Pvt. Ltd., New Delhi,2015.	1,2, 3, 4	In Lib
$\begin{gathered} 1,2,3 \\ 4,5 \end{gathered}$	3. Bhavikatti, Structual Analysis, Vikas Publishing House Pvt. Ltd, New Delhi, 2002.	1, 2, 3, 4	In Lib
C	Concept Videos or Simulation for Understanding	-	-
	Module-1		
1	https://www.youtube.com/watch?V=AgYVQMogUug		
2	https://www.youtube.com/watch?v=eVEN8etXkYc		
3	https://www.youtube.com/watch?v=LZOVrktwtUM\&t=114S		
4	```https://wwww.youtube.com/watch? v=aNi_Zn_gQrA&list=PLjrNUPGdy6hZTgoBK7_6S-- tK_lUEgXtw&index=1```		
5	https://www.youtube.com/watch? v=Oj8hldXukkE\&List=PLjrNUPGdy6hZTgoBK7_6S-tK_LUEgXtw\&index=2		
	Module-2		
1	https://www.youtube.com/watch?v=AxThUt8M_ho		
2	https://www.youtube.com/watch?v=QGbUFqJdWuc		
3	https://www.youtube.com/watch?v=Vg5LDGMoCO4\&t=2s		
	Module-3		
1	https://www.youtube.com/watch?V=1ES78kUkf50		
2	https://www.youtube.com/watch?v=kVJRHaoZfvl		
3	https://www.youtube.com/watch?v=whBaUyNmXeA		
4	https://www.youtube.com/watch?v=n1-skzqfiqs		
5	https://www.youtube.com/watch?V=Q1bypcTs3fY		
6	https://www.youtube.com/watch?v=57UiP6tqbqo		
7	https://www.youtube.com/watch?v=MR1DmMnLTvw		
8	https://www.youtube.com/watch?v=02pOdMKCoVs		
9	https://www.youtube.com/watch?v=OSU0ZnJyqtg		
10	https://www.youtube.com/watch?v=whZ2y-qXzkl		
	Module-4		
1	https://www.youtube.com/watch?V=Wx_NNuVR9zl		
2	https://www.youtube.com/watch?v=3weEkxXebeo		
3	https://Www.youtube.com/watch?V=WB__FR_L_LU		
4	https://www.youtube.com/watch?v=pjevR7kAXoM		
5	https://www.youtube.com/watch?V=WzULLcCJtqU		
6	https://www.youtube.com/watch?v=GOEEm4KK108		
7	https://www.youtube.com/watch?v=wq-maHO-3Ys		
8	https://www.youtube.com/watch?v=a_MvHFuLDdE		
9	https://www.youtube.com/watch?v=pAhp2oWsNNc		
10	https://www.youtube.com/watch?V=TFglngl48kA		
11	https://www.youtube.com/watch?v=NtNii_pmp_8		

	Module-5		
1	https://www.youtube.com/watch?v=d2Lka5GD10E		
2	https://www.youtube.com/watch?v=pJKfOvN36Jo		
3	https://www.youtube.com/watch?v=SuUioxoqgDk\&t=283s		
4	https://www.youtube.com/watch?v=ljdr2c6Pig4		
5	https://www.youtube.com/watch?v=GgVsO8RW/bJo		
6	https://www.youtube.com/watch?v=AiBW49BLu24		
7	https://www.youtube.com/watch?v=pEpnEfwaXrk		
8	https://www.youtube.com/watch?v=mQBdG4Rkclc		
		-	-
D	Software Tools for Design	-	-
	Staad Pro., ETABS.	-	-
E	Recent Developments for Research		
		-	
F	Others (Web, Video, Simulation, Notes etc.)		
1			

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.
Students must have learnt the following Courses / Topics with described Content ..

Mod ules	Course Code	Course Name	Topic / Description	Sem	Remarks	Blooms Level
1,3	17 cv32	Strength Materials	off1. Conditions of Equillibrium. 2.Shear force and bending moment diagrams.	3		L3

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry \& profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.
Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Topic / Description	Remarks	Blooms Level	
3	Knowledge on analyzing determinate structures	Higher Study		Understa nd L2

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

Mod ules	Course Code.\#	Course Outcome At the end of the course, student should be able to ...	Teach. Hours	Instr Method	Assessme nt Method	Blooms' Level

1	18CV42	Understand different forms of structural systems and Analyse the structure for DOF and drawing ILD Diagram.	10	Lecture	CIA and Assignme nt	L4
2	18CV42	Understand concept of moving loads and Analyse for the same.	10	Lecture	CIA and Assignme nt	L4
3	18CV42	Analyse slopes and deflections of beams and trusses.	10	Lecture	CIA and Assignme nt	L4
4	18CV42	Understand concept of Energy Principles, Energy Theorems and find out Deflection in beams	10	Lecture	CIA and Assignme nt	L4
5	18CV42	Analyse arches and cables.	10	Lecture	CIA and Assignme nt	L4
-	-	Total	50	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.
Students should be able to employ / apply the course learnings to ...

Mod ules	Application Area Compiled from Module Applications.	CO	Level
1	Used to Determine the structure for its determinacy, and to study the behaviour of structure for its unit loads through ILD.	1	L 4
2	Used to Determine the reactions, shear force and Bending moment for the moving loads for different load conditions.	2	L 4
3	Used to determine the slope and Deflection of the beams by using different methods.	3	$\mathrm{L4}$
4	Used to determine the Energy principals and Energy theorems for the given structures. Used to determine the reactions, Bending moment and Shear force for arches and Cables.	4	$\mathrm{L4}$

3. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes															-
Mod ules	CO.\#	At the end of the course student should be able to . .			3	$\begin{gathered} \mathrm{PO} \\ 4 \end{gathered}$	$\begin{gathered} \hline \mathrm{PO} \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 6 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 7 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 8 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 9 \end{gathered}$	$\begin{aligned} & \mathrm{PO} \\ & 10 \end{aligned}$	PO	PO	PS	$\begin{array}{\|l\|} \mathrm{PS} \\ \mathrm{O} 2 \end{array}$	$\begin{aligned} & \mathrm{PS} \\ & \mathrm{O}_{3} \end{aligned}$	$\begin{gathered} \text { Lev } \\ \mathrm{el} \end{gathered}$
1	CO1	Understand different forms of structural systems and Analyse the structure for DOF and drawing ILD Diagram.	3	2	-	-	-	2	1	1	3	3	2	2				L4
2	CO 2	Understand concept of moving loads and Analyse for the same.	3	2	-	-	-	2	1	1	3	3	3	3				L4
3	CO 3	Analyse slopes and deflections of beams and trusses.	2	3	-	-	-	2	1	1	3	3	3	3				L4
4	CO 4	Understand concept of Energy Principles , Energy Theorems and find out Deflection in beams.	2	2	-	-	-	2	1	1	3	3	2	3				L4
5	CO 5	Analyse arches and cables.	2	3	-	-	-	2	1	1	3	3	3	3				L4

4. Curricular Gap and Content

Topics \& contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod ules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1		Seminar	$2^{\text {nd }}$ week / date	Dr XYZ, Inst	List from B4 above
2		Seminar	$3^{\text {rd }}$ Week		

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

Mod ules	Title	Teach. Hours	No. of question in Exam						CO	Levels
			CIA-1	CIA-2	CIA-3	Asg	Extra Asg	SEE		
1	Introduction and Analysis of Plane Trusses	10	4	-	-	1	1	2	CO1	L2,L4
2	Deflection of beams	10	4	-	-	1	1	2	CO 2	L2,L4
3	Energy Principles and Energy Theorems	10	-	4	-	1	1	2	CO_{3}	L2,L4.
4	Arches and cable structures	10	-	4	-	1	1	2	CO 4	L2,L4
5	Influence Lines and Moving Loads	10	-	-	8	1	1	2	CO_{5}	L2,L4
-	Total	50	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A. 2.

Mod ules	Evaluation	Weightage in Marks	CO	Levels
1,2	CIA Exam - 1	30	CO1, CO2	L2, L4
3, 4	CIA Exam - 2	30	$\mathrm{CO}_{3}, \mathrm{CO} 4$	L2, L4
5	CIA Exam-3	30	CO_{5}	L2, L4
1, 2	Assignment - 1	10	C06, CO7	L2, L4
3, 4	Assignment - 2	10	C08, CO9	L2, L4
5	Assignment-3	10	CO10	L2, L4
1,2	Seminar - 1		-	-
3, 4	Seminar - 2		-	-
5	Seminar-3		-	-
1,2	Quiz - 1		-	-
3.4	Quiz - 2		-	-
5 Q	Quiz - 3		-	-
1-5	Other Activities - Mini Project	-		
	Final CIA Marks	40	CO1, CO10	L2-L4

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction and Analysis of Plane Trusses	Appr Time:	10 Hrs
a	Course Outcomes	CO	Blooms
	Understand different forms of structural systems and Analyse the structure for DOF and drawing ILD Diagram.	1	L4
b	Course Schedule	-	-
Class No	Portion covered per hour	-	
1	Structural forms, Conditions of equilibrium.	1	L2
2	Compatibility conditions, Degree of freedom.	1	L2
3	Linear and non linear analysis, Static and kinematic indeterminacy of structural systems.	1	L2
4	Problems,	1	L4
5	Problems,	1	L4
6	Concepts of influence lines-ILD for reactions, SF and BM for determinate beams-ILD for axial forces in determinate trusses and	1	L2
7	numerical problems	1	L4
8	numerical problems	1	L4
9	numerical problems	1	L4
10	numerical problems	1	L4
c	Application Areas		
-	Students should be able employ / apply the Module learnings to .		
1	Used to Determine the structure for its determinacy, and to study the behaviour of structure for its unit loads through ILD.		
2	Used for the design of Reinforced cement concrete, Pre-stressed concrete, steel and Marine structures.		
d	Review Questions		
-			
1	Distinguish between Statically determinate beams and Indeterminate beams with examples.	CO1	L2
2	Determine static and Kinematic indeterminacy of the following. i) iv)	CO1	L4
3	Find the forces in all members of the pin jointed truss shown in figure	CO1	L4
4	Define an Influence line diagram and mention its applications.	CO1	L2
5	Draw the influence line diagram formation 1. Reactions at supports of a simply supported beam. 2. Shear force of a simply supported beam carrying concentrated unit load.	CO1	L2
6	A UDL of $15 \mathrm{kN} / \mathrm{m}$ covering a length 3 m crosses a girder of span 10 m . Find the max. shear force and bending moment at a section 4 m from the left support.	CO1	L4
e	Experiences	-	-
1		CO 1	L2

Module - 2

Title:	Moving Loads	Appr Time:	10 Hrs
a	Course Outcomes	CO	Blooms
-		-	Level
	Understand concept of moving loads and Analyse for the same.	2	L4
b	Course Schedule		-
$\begin{aligned} & \text { Class } \\ & \text { No } \end{aligned}$	Portion covered per hour	-	-
11	Reactions, BM and SF in determinate beams, axial forces in determinate trusses for rolling loads using ILD.	2	L2
12	Numerical problem.	2	L4
13	Numerical problem.	2	L4
14	Numerical problem.	2	L4
15	Numerical problem.	2	L4
16	Numerical problem.	2	L4
17	Numerical problem.	2	L4
18	Numerical problem.	2	L4
19	Numerical problem.	2	L4
20	Numerical problem.	2	L4
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to ...	-	-
1	Used to Determine the reactions, shear force and Bending moment for the moving loads for different load conditions.		
2	Used for the design of Reinforced cement concrete, Pre-stressed concrete, steel and Marine structures.		
d	Review Questions	-	-
-			
1	For a simply supported beam of span 25 m with the series of concentrated loads to be taken as rolling load system as shown in figure. Compute the following by influence line principles. 1. Maximum Reactions 2. Maximum bending moment at 8 m from the left support.	2	L4
2	A simple girder of 20 m span is traversed by a moving uniformly distributed load of 6 m length with an intensity of $20 \mathrm{kn} / \mathrm{m}$ from left to right. Find the maximum bending moment and maximum positive and negative shear forces at sections 4 m from left support. Also find the absolute maximum bending moment that may occur anywhere in the girder.	2	L4
3	Using relevant influence line diagram find 1. Maximum bending moment 2) The maximum positive and negative shear forces at 4 m from left support of a simply supported girder of span 10 m , when a train of 4 wheel loads of $10 \mathrm{KN}, 15 \mathrm{KN}$, 30 KN , and 30 KN spaced at $2 \mathrm{~m}, 3 \mathrm{~m}$ and 3 m respectively cross the span left to right with 10 KN load leading.	2	L4
18 CV 42		s res	

E1. CIA EXAM - 1

a. Model Question Paper - 1

b. Assignment -1

Crs Code: Course:		18CV42	Sem:	IV	Marks:	10	Time:	75 minutes.			
		Analysis of Determinate Structures.									
SNo		Assignment Description							Marks	CO	Level
1	Distinguish between Statically determinate beams and Indeterminate beams with examples.								4	1	L2
2	Determine static and Kinematic indeterminacy of the following. d) iv)								12	1	L4
3	Briefly explain different forms of structure?								4	1	L2
4	State the assumptions made in the analysis of truss?								5	1	L2
5	Define a Influence line diagram and mention its applications.								07	1	L2
6	Draw the influence line diagram formation 1. Reactions at supports of a simply supported beam. 2. Shear force of a simply supported beam carrying concentrated unit load								08	1	L4
7	1Maximum Reactions 2. Maximum bending moment at 8 m from the left support.								15	2	L4
8	A simple girder of 20 m span is traversed by a moving uniformly distributed load of 6 m length with an intensity of $20 \mathrm{kn} / \mathrm{m}$ from left to right. Find the maximum bending moment and maximum positive and negative shear forces at sections 4 m from left support. Also find the absolute maximum bending moment that may occur anywhere in the girder.								15	2	L4
9	Using relevant influence line diagram find 1. Maximum bending moment 2) The maximum positive and negative shear forces at 4 m from left support of a simply supported girder of span 10m, when a train of 4 wheel loads of $10 \mathrm{KN}, 15 \mathrm{KN}, 30 \mathrm{KN}$, and 30 KN spaced at $2 \mathrm{~m}, 3 \mathrm{~m}$ and 3 m repectively cross the span left to right with 10 KN load leading.								15	2	L4
	The multiple point loads $100 \mathrm{kN}, 120 \mathrm{kN}, 80 \mathrm{kN}$ and 150 kN with a spacing of 2 m crosses a girder of span 30 m from left to right with a 100 kN load bearing. Calculate 1) Reactions. 2)Maximum Shear Force at a section 10 m from the left.3)Maximum BM at a section 10 m from the left. 4) Absolute max SF . 5) Absolute Maximum Bending Moment.								15	2	L4
10	Using ILD Determine Shear force and BM at section C in the Simply supported beam as shown in the figure.								15	2	L4

D2. TEACHING PLAN - 2

Module - 3

Title:	Deflection of Beams	Appr Time:	10 Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to ...	-	Level
1	Analyse slopes and deflections of beams and trusses.	3	L4
b	Course Schedule		
Class No	Portion covered per hour	-	-
21	Moment area method.	3	L2
22	Derivation, Mohr's theorems, Sign conventions,	3	L2
23	Application of moment area method for determinate prismatic beams,	3	L2
24	Numerical Problems.	3	L4
25	Numerical Problems.	3	L4
26	Beams of varying section, Use of moment diagram by parts.	3	L2
27	Conjugate beam method: Real beam and conjugate beam, conjugate beam theorems, Application of conjugate beam method of determinate beams of variable cross sections.	3	L2
28	Numerical Problems.	3	L4
29	Numerical Problems.	3	L4
30	Numerical Problems.	3	L4
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Used to determine the slope and Deflection of the beams by using different methods.	3	L4
2	Used for the design of Reinforced cement concrete, Pre-stressed concrete, steel and Marine structures.	3	L4
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Derive moment curvature equation.	CO_{3}	L4
2	A beam of length 6 m is simply supported at its ends and carries a point load of 40 KN at a distance of 4 m from the left support. Find the slopes at the supported ends and deflection under the load by Maculay's method.	CO3	L4
3	Find the slope and deflection at the free end of the cantilever beam shown in figure by moment area method.	CO 3	L4

$18 C V 42$

e	Experiences	-	-
1		CO6	L2
2			

Module - 4

Title:	Energy Principles and Energy Theorems	Appr Time:	10 Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Understand concept of Energy Principles, Energy Theorems and find out Deflection in beams .	4	L4
b	Course Schedule		
Class No	Portion covered per hour	-	-
31	Principle of virtual displacements, Principle of virtual forces, Strain energy and complimentary energy,	4	L2
32	Strain energy due to axial force, bending, shear and torsion,	4	L2
33	Deflection of determinate beams and trusses using total strain energy,	4	L2
34	Deflection at the point of application of single load,	4	L2
35	Numerical Problems.	4	L4
36	Numerical Problems.	4	L4
37	Numerical Problems.	4	L4
38	Numerical Problems.	4	L4
39	Castig liano's theorems and its application to estimate the deflections of trusses, bent frames,	4	L2
40	Special applications-Dummy unit load method.	4	L2
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to . . .	-	-
1	Used to determine the Energy principals and Energy theorems for the given structures.	4	L4
2	Used for the design of Reinforced cement concrete, Pre-stressed concrete, steel and Marine structures.	4	L4
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	State 1) Castigilano's theorem 2) Principle of virtual work.	C04	L2
2	Determine the vertical deflection at joint C of the truss shown in fig. Take $\mathrm{E}=200 \times 10^{6} \mathrm{KN} / \mathrm{m}^{2}$ and cross sectional area of each bar as $150 \times 10^{-6} \mathrm{~m}^{2}$	C04	L4
3	Determine the deflection of the cantilever beam shown in figure at its free end, by castigilano's method. Take EI= $12000 \mathrm{Nm}^{2}$	CO4	L4

	$\underset{x_{4} m+1}{x+200}$		
4	Determine the vertical and horizontal deflection at the end C of the bent frame shown in figure by unit load method. Take $\mathrm{E}=200 \mathrm{GPA}$ and $\mathrm{I}=6 \times 10^{7} \mathrm{~mm}^{4}$	CO 4	L4
5	Explain the principles of virtual displacement and forces?	CO4	L4
6	Using Castigliano's theorem, Determine the virtual displacement of joint C of the truss shown $\mathrm{A}=400 \mathrm{~mm}^{2}$. $\mathrm{E}=200 \mathrm{GPa}$.	CO4	L4
7	Derive strain energy in an axially loaded member?	CO4	L4
8	A beam AB is simply supported over a span 5 m in length. A concentrated load of 30 kN is acting at a section 1.25 m from left support A. Calculate the deflection under the load point using dummy unit load method $. E=200 \times 10^{6}$ $\mathrm{kN} / \mathrm{m}^{2}, \mathrm{l}=13 \times 10^{6} \mathrm{~m}^{4}$.	CO4	L4
e	Experiences	-	-
1		CO 7	L2
2			

E2. CIA EXAM - 2

a. Model Question Paper-2

Crs Code:	18 CV42	Sem:	IV	Marks:	30	Time:	75 minutes

Course: Analysis of Determinate Structures.

| - | - | Note: Answer all questions, each carry equal marks. Module: 3,4 | Marks | CO | Level |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- |
| 1 | a | Find the slope and deflection at the free end of the cantilever beam
 shown in figure by moment area method. | 16 | CO_{4} | L 4 |
| 2 | | Find the deflection under the concentrated load for the beam shown in
 figure using conjugate beam method. El= $40000 \mathrm{KN}-\mathrm{M}^{2}$ | 16 | CO | $\mathrm{L4}$ |

3	a	Explain the principles of virtual displacement and forces?	06	CO4	L4
	b	Using Castigliano's theorem, Determine the virtual displacement of joint C of the truss shown $A=400 \mathrm{~mm}^{2}$. $\mathrm{E}=200 \mathrm{GPa}$.	10	CO4	L4
		or			
4	a	State 1) Castigilano's theorem 2) Principle of virtual work.	06	CO 4	L2
	b	Determine the vertical deflection at joint C of the truss shown in fig. Take $\mathrm{E}=200 \times 10^{6} \mathrm{KN} / \mathrm{m}^{2}$ and cross sectional area of each bar as $150 \times 10^{-6} \mathrm{~m}^{2}$	10	C04	L4

b. Assignment - 2

3	Explain the principles of virtual displacement and forces?	06	CO4	L4
4	Using Castigliano's theorem, Determine the virtual displacement of joint C of the truss shown $\mathrm{A}=400 \mathrm{~mm}^{2}$. $\mathrm{E}=200 \mathrm{GPa}$.	10	co4	L4
5	State 1) Castigilano's theorem 2) Principle of virtual work.	06	C04	L2
6	Determine the vertical deflection at joint C of the truss shown in fig. Take $E=200 \times 10^{6} \mathrm{KN} / \mathrm{m}^{2}$ and cross sectional area of each bar as $150 \times 10^{-6} \mathrm{~m}^{2}$	10	C04	L4
7	Determine the deflection of the cantilever beam shown in figure at its free end, by castigilano's method. Take El= $12000 \mathrm{Nm}^{2}$	16	CO4	L4
8	Determine the vertical and horizontal deflection at the end C of the bent frame shown in figure by unit load method. Take $\mathrm{E}=200 \mathrm{GPA}$ and $\mathrm{I}=6 \times 10^{7}$ mm^{4}	16	CO 4	L4
9	Explain the principles of virtual displacement and forces?	06	CO4	L4
10	Using Castigliano's theorem, Determine the virtual displacement of joint C of the truss shown $A=400 \mathrm{~mm}^{2}$. $\mathrm{E}=200 \mathrm{GPa}$.	16	co4	L4

D3. TEACHING PLAN - 3

Module - 5

Title:	Arches and Cable Structures	Appr Time:	10 Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Analyse arches and cables.	5	L4
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
41	Three hinged parabolic and circular arches with supports at the same and different levels. Determination of normal thrust, radial shear and bending moment.	5	L2
42	Numerical problems	5	L4
43	Numerical problems	5	L4
44	Numerical problems	5	L4
45	Numerical problems	5	L4
46	Analysis of cables under point loads and UDL. Length of cables for supports at same and at different levels- Stiffening trusses for suspension cables.	5	L2
47	Numerical problems	5	L4
48	Numerical problems	5	L4
49	Numerical problems	5	L4
50	Numerical problems	5	L4
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to ..	-	-
1	Used to determine the reactions, Bending moment and Shear force for arches and Cables.	5	L4
2	Used for the design of Reinforced cement concrete, Pre-stressed concrete, steel and Marine structures.	5	L4
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	A three hinged parabolic arch has a span of 24 m and a central rise of 4 m . It carries a concentrated load of 75 KN at 18 m from the left support and UDL of $45 \mathrm{KN} / \mathrm{m}$ over the left half of the portion. Find out the resultant reactions. Also determine the B.M, Normal thrust and radial shear at a section 6 m from the left support.	CO 5	L4
2	A cable is suspended between two points A and B 120m apart and a central dip of 8 m . It carries a UDL of $20 \mathrm{KN} / \mathrm{m}$. Determine 1. the maximum and minimum tension in the cable 2. Length of the cable 3. the size of cable if the permissible stress of cable material is $200 \mathrm{~N} / \mathrm{mm}^{2}$	CO 5	L4
3	A three hinged parabolic arch has a span of 16 m and a central rise of 4 m . It carries a point load of 100 kN @ 4 m from the left support. Find out the resultant reactions. Also Evaluate the B.M, Normal thrust and radial shear at a section 6 m from the left support. Take the equation of arch $\mathrm{y}=4 \mathrm{~h} x(l-x)$ with left hand support as origion.	CO 5	L4
4	Derive the expression for the length of cable for supports at same level.		
		CO 5	L4
5	Derive the expression for the length of cable for supports at different level.	CO 5	L2
6	A footbridge of width 3 m and span 50 m is carried by 2 cables of uniform section having a central dip of 5 m . If the platform load is $5 \mathrm{kN} / \mathrm{m}^{2}$. Calculate the maximum pull in the cables. Find the necessary section area required if the allowable stress is $120 \mathrm{~N} / \mathrm{mm}^{2}$.	CO 5	L4

\mathbf{e}	Experiences	-	
1		CO 10	L 2
2		CO 9	

E3. CIA EXAM - 3

a. Model Question Paper - 3

Crs Code:	18 CV42	Sem:	IV	Marks:	30	Time:	75 minutes

Course: Analysis of Determinate Structures.

-	-	Note: Answer all questions, each carry equal marks. Module : 5	Marks	CO	Level
1	a	A three hinged parabolic arch has a span of 24 m and a central rise of 4 m . It carries a concentrated load of 75 KN at 18 m from the left support and UDL of $45 \mathrm{KN} / \mathrm{m}$ over the left half of the portion. Find out the resultant reactions. Also determine the B.M, Normal thrust and radial shear at a section 6 m from the left support.	16	CO 5	L4
		OR			
2	a	A cable is suspended between two points A and B 120m apart and a central dip of 8 m . It carries a UDL of $20 \mathrm{KN} / \mathrm{m}$. Determine 1. the maximum and minimum tension in the cable 2. Length of the cable 3. the size of cable if the permissible stress of cable material is $200 \mathrm{~N} / \mathrm{mm}^{2}$	16	CO 5	L4
3	a	A three hinged parabolic arch has a span of 16 m and a central rise of 4 m . It carries a point load of 100 kN @ 4 m from the left support. Find out the resultant reactions. Also Evaluate the B.M, Normal thrust and radial shear at a section 6 m from the left support. Take the equation of arch $\mathrm{y}=4 \mathrm{~h} \times(\mathrm{l}-\mathrm{x})$ with left hand support as origion.	16	CO_{5}	L4
		OR			
4	a	Derive the expression for the length of cable for supports at same level.	08	CO_{5}	L4
	b	Derive the expression for the length of cable for supports at Different level.	08	CO_{5}	L4

b. Assignment - 3

Model Assignment Questions									
Crs Code:	18CV42 Sem:	IV	Marks:	10	Time:	75 minutes			
Course:	Analysis of Determinate Structures.								
SNo	Assignment Description						Marks	CO	Level
1	A three hinged parabolic arch has a span of 24 m and a central rise of 4 m . It carries a concentrated load of 75 KN at 18 m from the left support and UDL of $45 \mathrm{KN} / \mathrm{m}$ over the left half of the portion. Find out the resultant reactions. Also determine the B.M, Normal thrust and radial shear at a section 6 m from the left support.						16	CO 5	L4
2	A cable is suspended between two points A and B 120m apart and a central dip of 8 m . It carries a UDL of $20 \mathrm{KN} / \mathrm{m}$. Determine 1. the maximum and minimum tension in the cable 2. Length of the cable 3. the size of cable if the permissible stress of cable material is $200 \mathrm{~N} / \mathrm{mm}^{2}$						16	CO 5	L4
3	A three hinged parabolic arch has a span of 16 m and a central rise of 4 m . It carries a point load of 100 kN @ 4 m from the left support. Find out the resultant reactions. Also Evaluate the B.M, Normal thrust and radial						16	CO 5	L4

	shear at a section 6 m from the left support. Take the equation of arch $y=4 h x(l-x)$ with left hand support as origion.			
4	Derive the expression for the length of cable for supports at same level.	08	CO 5	L4
5	Derive the expression for the length of cable for supports at Different level.	08	CO 5	L4

F. EXAM PREPARATION

1. University Model Question Paper

Cours		Analysis	termina	uctur			Month /	Year	May /	2018
Crs Cod	de:	18cv42	Sem:	IV	Marks:	100	Time:		180 m	inutes
Mod ule		Answer	E full q	ns. A	ons carry	al mar		Marks	CO	Level
1	a	Distingu beams	tween ample	ally	inate bea	and	erminate	08	CO1	L2
	b	Determ	ic and i) iii) 싱	atic	inacy of (d) 介ि iv)	follow		08	CO1	L4
2	a	Define a	nce lin	ram	ntion its a	cations		06	CO 1	L2
	b	Draw th 1. React 2. Shear load	ence lin suppo of a	ram sim sup	orted be beam ca	g con	ted unit	10	CO1	L4
3	a	For a sim loads to following 1. Maxim 2. Maxim	upport ken as fluenc 15000 eaction ending	m of oad rinc ku 3	m with th as shown KN m the left	ries of figure.	entrated ute the	16	CO 2	L4
4	a	Using re 2) The support loads of repectiv	influe um p mply s N, 15K ss the	e di and ed K, ft 30 kN 3 m	nd 1. Max ve shear span 10m KN space th 10 KN 10 kN	m ben es at en a trair at 2 m , leading	moment from left 4 wheel and $3 m$	16	CO 2	L4

5	a	Derive moment curvature equation.	06	CO_{3}	L2
	b	A beam of length 6 m is simply supported at its ends and carries a point load of 40 KN at a distance of 4 m from the left support. Find the slopes at the supported ends and deflection under the load by Maculay's method.	10	CO 3	L4
		OR			
6	a	Find the slope and deflection at the free end of the cantilever beam shown in figure by moment area method.	08	CO_{3}	L4
	b	Find the deflection under the concentrated load for the beam shown in figure using conjugate beam method. $\mathrm{El}=40000 \mathrm{KN}-\mathrm{M}^{2}$	08	CO_{3}	L4
		Module 4			
7	a	State 1) Castigilano's theorem 2) Principle of virtual work.	06	CO 4	L2
	b	Determine the vertical deflection at joint C of the truss shown in fig. Take $\mathrm{E}=200 \times 10^{6} \mathrm{KN} / \mathrm{m}^{2}$ and cross sectional area of each bar as $150 \times 10^{-6} \mathrm{~m}^{2}$	10	C 04	L4
		OR			
8	a	Determine the deflection of the cantilever beam shown in figure at its free end, by castigilano's method. Take El= $12000 \mathrm{Nm}^{2}$	08	CO4	L4
	b	Determine the vertical and horizontal deflection at the end C of the bent frame shown in figure by unit load method. Take E=200GPA and I=6×107 mm^{4}	08	CO 4	L4
		Module 5			
9		A three hinged parabolic arch has a span of 24 m and a central rise of 4 m . It carries a concentrated load of 75 KN at 18 m from the left support and UDL of $45 \mathrm{KN} / \mathrm{m}$ over the left half of the portion. Find out the resultant reactions. Also determine the B.M, Normal thrust and radial shear at a section 6 m from the left support.	16	CO 5	L4
18 CV 42		Copyright ©2017. cAAS. All rights reserved.			

		OR			
10	A cable is suspended between two points A and B 120m apart and a central dip of 8m. It carries a UDL of 20KN/m. Determine 1. the maximum and minimum tension in the cable 2. Length of the cable 3. the size of cable if the permissible stress of cable material is $200 \mathrm{~N} / \mathrm{mm}^{2}$	16	co5	$\mathrm{L4}$	

2. SEE Important Questions

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

	load			
3	For a simply supported beam of span 25 m with the series of concentrated loads to be taken as rolling load system as shown in figure. Compute the following by influence line principles. 1. Maximum Reactions 2. Maximum bending moment at 8 m from the left support.	15	CO 5	L4
4	A simple girder of 20 m span is traversed by a moving uniformly distributed load of 6 m length with an intensity of $20 \mathrm{kn} / \mathrm{m}$ from left to right. Find the maximum bending moment and maximum positive and negative shear forces at sections 4 m from left support. Also find the absolute maximum bending moment that may occur anywhere in the girder.	15	CO 5	L4
5	Using relevant influence line diagram find 1. Maximum bending moment 2) The maximum positive and negative shear forces at 4 m from left support of a simply supported girder of span 10m, when a train of 4 wheel loads of $10 \mathrm{KN}, 15 \mathrm{KN}, 30 \mathrm{KN}$, and 30 KN spaced at $2 \mathrm{~m}, 3 \mathrm{~m}$ and 3 m respectively cross the span left to right with 10 KN load leading.	15	CO 5	L4

Course Outcome Computation

Academic Year:

Odd / Even semester

PO Computation

